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1. INTRODUCTION

This repert provides technical assistance to the New York State
Department of Environmental Conservation (NYDEC) in projecting the

" transport of lampricides applied to Lake Champlain tributaries and bays.

This information will be used by NYDEC to evaluate impacts on water
supplies and on sensitive ecological areas and to design procedures for
monitoring and mitigating impacts associated with the proposed lamprey
control program.. '

Mathematical models are used to project the sgpatial and temporal
histories of lampricide plumes resulting from specified treatment
conditions (defined by applied concentration, duration, location,
streamflow, wind regime, and season). Ewvaluations have been conducted
at five sites and seven proposed treatments:

Lampricide Treatment
Site No. River/Creek TFM Bayer-73

Great Chazy River
Saranac River x
Ausable River b4

Lewis Creek
Putnam Creek

(S L
WMWK M

Site locations are shown in Figure 1. For each site and treatment, the
size and duration of the lampricide plume have been projected down to 50
and 20 ppb concentration levels.

2. TECHNICAL APPROACH

The projections are based upon mathematical models representing
hydrodynamics and mass transport in the embayment and open lake waters
associated with each application site. Two types of models are
involved:

{1) hydrodynamic wmodel, which predicts current speeds and
directions in the lake surface layer as a function of
wind speeds, wind directions, and topography (Laible,
1985a,1985b,1986); and :

(2) transport model, which predicts concentration patterns as
a function of current velocities, flows, applied
concentrations, and topography (Walker,b1985).

The models are tested against field data from Rhodamine dye studies
conducted by the NYDEC between May and August, 1986 (Meyers,1986). The
field data consist of river discharge rates, local wind conditions, dye
concentrations and temperature recordings.

The tasks required for projecting the transport at each site are as
follows:




(1) Based upon review of dye study results, define model
regions. '

{(2) Develop finite element grid for hydrodymamic model.

{(3) Run hydrodynamic model to generate lake circulation
patterns for various wind conditions.

(4) Develop transport model grid.

(5) Using circulation patterns generated by the hydrodynamic
model, simulate dye release experiments and test models
by comparing observed and predicted dye concentratioms.

(6) Use linked hydrodynamic and transport models to simulate
lampricide plume under proposed treatment conditions
(streamflow, applied concentration, duration) over a
range of ambient wind conditions,

Results of preliminary simulations and sensitivity analyses are
described in a previous report (Laible and Walker,1986). Initial
sections of this report discuss basic concepts involved in the
hydrodynamic analysis, mass transport analysis, and simulation of
treatment conditions. Detailed results for each site are subsequently
presented. A final sgection summarizes results and compares plume -
projections with those developed by Meyers (1986) based upon dye study
results,

3. HYDRODYNAMIC ANALYSIS

Circulation patterns in the wvicinities of the river mouths have
been simulated using a steady-state finite element hydrodynamic model
(FEM) which has been developed and applied elsewhere on Lake Champlain
{Laible,1985a,1985b,1986). Lake circulation is drivem by wind. The
model first computes vertically averaged horizontal wvelocities of the
fluid at discrete points (nodes) in the model region. Subsequently, the
vertical distribution of the flow at each node is computed,

Wind-driven flows vary over depth owing to development of two types
of currents: drift curremts and slope currents. Drift currents are
directly attributed to wind shear on the water surface. As water piles
up or is drawn away from the shoreline, a surface elevation gradient
develops. This gradient causes a pressure in the opposite direction of
rising slope. This pressure drives fluid at the lower depths in a
direction generally opposite to the direction of the wind (slope
current).

The distribution of flow over depth generally starts with surface
currents aligned with the wind, except in deepexr regions, where they may
deviate significantly due to Ekman frictiomal effects. With increased
depth, the currents diminish and then reverse, pointing into the wind.
In shallow regions, horizontal patterns are further complicated by

2




effects of topography. Topographic flows interact with classical slope
and drift currents to form relatively complex velocity distributions
which can only be described by numerical models of the type employed in
this study. For a detailed discussion of the finite element model, the
reader is referred to Laible (1985a,1985b,1986).

From the complex flow distribution, it is possible to evaluate
total flows in the mixed layer at each node in each of the orthogonal
directions. This is done by integrating the vertical flow distribution
over the mixed layer depth and keeping track of the total flow in each
of four directions (north, south, east, and west). The wvertically
integrated flows are used in the two-dimensional mass transport model
described below.

Circulation patterns have been generated at each site for eight
different wind directions (N,NE,E,SE,S,SW,.W,NW) under a standard wind
speed (8.7 miles pexr hour). Flow patterns for other wind speeds have
been generated by scaling (flow rates are roughly proportional te the
square of the effective wind speed). These current fields have been
used in modeling tramsport of dye and 1ampr1c1de under appropriate wind
conditions, as described below,

The hydredynamic flow fields are presented as vector plots of
vertically averaged flow at each node and total flux (velocity times
depth) at each node., A total of 80 flow fields and their associated
exchange and advective fields have been generated under this study.
Examples for N and NE winds are presented for each site (e.g., Figures
17 and 18). Reversing the direction of the arrows on these figures
yields circulation patterns under S and SW winds, respectively.

&. MASS TRANSPORT ANALYSIS

Mass transport simulations have been performed using 82D, a finite-
difference model developed in previous studies on Lake Champlain
(Walker,1985; Walker et al.,1986). As compared with the triangular,
link/node grid used by the FEM, S2D simulations are performed on a grid
of square cells. The model is two dimensional (latitude and longitude)
and has been designed for application to the lake surface layer. Each
cell is assumed to be completely mixed, Two basic modes of tramsport
are consldered:

(1) advection (based upon current velocities gupplied by the
hydrodynamic model), and

(2) diffusion (calculated frem cell morphometry and an
assumed diffusion or dispersion coefficient).

The advective circulation patterns supplied by the FEM reflect wind-
driven currents in both directions across each cell interface. Exchange
between adjacent cells can occur, for example, because of surface drift
currents in one direction and bottom slope currents in the opposite
direction, Currents supplied by the hydrodynamic model generally
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dominate flow and mass transport between cells; the diffusive component
is relatively unimportant.

In a steady-state mode, 82D solves for concentration fields
resulting from a fixed loading regime and flow field. In a dynamic
mode, 82D solves for time-varying concentration flelds resulting from
transient loading regimes (e.g., 12-hour lampricide application). Flow
fields are fixed for a given run, however, To simulate transient flow
fields (e.g., resulting from shifting wind directions or varying
tributary flows), a series of linked model runs must be performed; final
concentrations for one run or time increment provide initial values for
the next. Boundary conditions can be specified as fixed concentration
or zero-gradient. The latter, more conservative boundary condition has
been used in the simulations discussed below.

Consistent with previcus model applications, a uniform cell size of
400 meters has been employed. Mean cell depths have been derived from
Lake Champlain navigation charts, which refer to minimum lake elevations

© (28.4 meters msl). Under 1986 spring-summer conditions, lake elevations

were near normal (1 to 1.2 meters above minimum). Accordingly, mean
depths used in simulations have been increased by one meter relative to
those displayed in cell grid maps (e.g., Figure 19). A maximum mixed-
layer depth of 10 meters has been assumed in the hydrodynamic and
transport simulations; accordingly, depths are truncated at 10 meters.
As described below, shallower mixed layers are assumed in most
simulations.

To permit use in transport simulations, flow fields generated by
the hydrodynamic model must be interpolated and integrated along cell
interfaces in the 82D grid. The resulting flows across each interface
nust also satisfy a water balance constraint on each cell., Considerable
effort has been expended in refining the methodology used for these
calculations, in order to minimize errors involved in linking the
hydrodynamic and transport models. The resulting procedure consists of
the following steps:

(1) read coordinates at FEM elements and nodes (x,y),
corresponding velocities in each direction (+vx, -vx,+vy,-
vy) and depths (z};

(2) translate FEM coordinates (x,y) to S2D grid coordinates
(column,row);

(3) for each cell interface (excluding those bordering land
masses):

{a) divide interface into 3 segments of equal length;

(b) interpolate products +vx#*z, -vr*z, +vy¥z, -vy¥z at
center of each segment, using weighted sum of values
at nearest node or element in each quadrant
(NE,SE,SW,NW); weight = squared inverse distance;
maximum distance = 1 row/column width;
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(¢) sum interpolated values over 3 segments and multiply
by cell width to get flows (m /day), positive and
negative, across each segment;

(4) formulate water balance equations and caleculate water
balance error (total flow in - total flow out) for each
cell;

(5) divide the grid into regions of approximately 30 cells;

(6) number vregions in increasing order, so that highest
numbered regions border on boundary conditions;

{7) for each region, in increasing order, correct water
balance errors by adding a correction term for the net
flow across each interface; exclude interfaces bordering
cells in lower-numbered regions; select correction terms
to minimize sum of squares of corrections, subject to
water balance constraints; formulate problem using
LaGrange Method of Undetermined Multipliers; solve
resulting system of linear equations (containing roughly
3 % #cells unknowns) via Gauss Elimination:

(8) store resultant flow matrix for use in subsequent runs.

Prior to flow balance correction, median water balance errors for flow
fields are on the order of 5X%.

5. WIND VELOCITY DATA

Wind speed and direction partially determine circulation patterns
predicted by the hydrodynamic model and the path of dye or lampricide
released into the lake at a particular location and time. Wind velocity
measurements taken during the dye release study at each site have been
described previously (Laible and Walker,1986). The locations of wind
measurements made in the field are critical; because of the sheltering
effects of land masses, land-based measurements tend to under-predict
effective wind speeds driving lake ecirculation. Wind speeds measured at
the study sites were generally lower than speeds measured simultanecusly
at Burlington Ailrport. The latter provides a long term, quality wind
record which has been shown to be more useful than onsite measurements
for modeling purposes because of the factors discussed above (Laible and
Walker,1987).

To provide perspectives on wind conditions, statistical analyses of
the Burlington Airport wind record have been conducted for May through
September of 1986 (3-hour obssrvations),. A cross-tabulation of wind
speed and direction (Table 1) shows that there are two dominant wind
events: South or Southeast (42.74 frequency) and North or Northwest
(33.1% frequency). The frequency distribution for September only (the
month proposed for lampricide application) is similar to that for May-
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September. The distribution of total wind load (driving force for lake
circulation, roughly proportional to square of wind speed) is also
dominated by southerly and southeasterly winds (Table 2). Similar
results have also been obtained for the May-September 1984 wind record
from Burlington Airport (Laible and Walker,1987).

The wind load factor (calculated as shown in Table 2) is defined as
the ratio of lake circulation rate at a given wind speed to the
circulation rate at a standard wind speed of 8.7 mph. Flow fields have
been generated by the FEM for each site and wind direction under a
standard wind speed of 8.7 mph (load factor = 1.0). Figure 2 displays
the three-day moving-average load factor vs. time for the May-September
1986 period. A three-day averaging period has been used because it is a
reasonable time scale for evaluating lampricide plume duration (from TFM
application to dilution below 50 or 20 ppb concentration levels).
Moving average load factors range from .5 to 4. Figure 2 provides
indications of the probabilities of encountering lake circulation rates
vhich are higher or lower than those simulated. As discussed below,
sensitivity analyses indicate that lampricide plume durations are
strongly dependent upon circulation rates (wind load factors). Maximum
Plume areas and locations, however, are dependent primarily upon wind
directions and mixed depths and are relatively insensitive to
circulation rates.

6. MODEL TESTING

Table 3 summarizes dye study and lampricide treatment conditions at
each site. The models are tested by simulating dye study conditions
(flow, applied concentration, duration, wind) and comparing observed and
estimated maximum dye concentrations iIn each model cell over the
duration of the dye measurements, In these simulations, dye
concentrations are rescaled to an applied concentration of 1000 ppb.
Observed and predicted plumes are compared at 100 and 10 ppb, which
correspond to 10-fold and 100-fold dilutions of the applied
concentration, respectively. These comparisons are complicated by the
following factors: '

(1) wariations in background fluorescence;
{2) potential errors in measurement coordinates;
(3) spatial data-reduction procedures;

(4) estimation of effective wind speeds and directions
driving lake circulation during the study period.

These factors are discussed below,

Variations in background (natural) fluorescence limit the
resolution of the dye studies, especially for detecting high dilution
ratios. As indicated in Table 3, maximum detectable dilution ratios
range from 93 to 470 for the wvarious sites, based upon background
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fluorescence values ranging from .02-.03 assumed by Meyers(1986). The
latter values are very conservative, however. Based upon review of dye
measurements taken at locations distant from the application point
and/or prior to the dye application, background fluorescence was highly
variable and occasionally exceeded .1 units., A median value of .05
seems more representative; this reduces the resolution range to 56-236,
Variations in background fluorescence likely account for some of the
differences between observed and predicted concentration contours,
particularly at the 100-fold dilution level.

As described by Meyers(1986), dye measurement locations were
tracked using Loran-C units. Instrument drift and possible errors in
the transformation to orthogonal coordinates (latitude and longitude)
are additional potential sources of error in the dye data,

The model predicts the mean concentration in each cell and time
step. The dye sampling strategy tended to exclude null samples (i.e.,
samples were more likely to be taken for laboratory analysis Lif the
onboard fluorimeter indicated wvalues which were significantly above
background levels.), Because of this strategy, limited number of
samples, and the complexities involved in spatial weighting, it is
infeasible to calculate a mean dye concentration for each grid cell and
time period for comparison with model simulations. Accordingly, the
comparisons based upon the maximum dye concentration detected in each
cell over the duration of the study. Both random and deterministic
factors contribute to wvariability within model cells and partially
explain differences between observed (maximur) and predicted {(mean) dye
concentrations,

For reasons discussed 1in Section 5, the selection of the
appropriate wind regime (direction, speed) to drive the hydrodynamic
model under dye study conditions is not straightforward. Each dye study
has been simulated under three alternative sets of wind conditions:

(1) Burlingron Airport diréctions and speeds (updated at 3-
hour increments);

(2) Burlington Airport resultant direction and observed mean
load factor, as defined in Table 2 (constant over entire
simulation period); and

(3) Site directions and Burlington Airport speeds (updated at
3-hour increments).

Possibly because of sheltering effects, site measurements of wind speed
are unrealistically low and have not been used in the simulations. The
above wind cases provide a range of simulations for comparison with the
observed dye plumes.

Based wupon review of lake temperature profiles, the vertical
distribution of dye with depth, and comparison of observed and predicted
dye plumes, the maximum depth of the mixed layer is adjusted to
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represent dye study conditions. To reflect thermal buoyancy of the
inflowing streams, shallower depths (1.5-2 meters) have been used in
simulating spring dye studies at the Great Chazy and Saranac Rivers,
Greater depths (5-10 meters} have been used in simulating the dye
studies conducted during August at the remaining sites. Simulations of
TFM and Bayer-73 applications (scheduled for September) assume maximum
mixed layer depths of 5 meters. Subject to potential effects of inflow
density currents (Section 10), the 5-meter mixed depth is conservative
{(likely causing over-estimation of plume areas) because the lake
thermocline is likely to be found in the 15-20 meter range during
September.

7. SIMULATION OF TFM APPLICATIONS

Once the hydrodynamic and mass transport models have been set up
and tested for a given lake region, simulation of TFM applications to
inflow streams is relatively straightforward. The application is
represented as a square wave in stream concentration (12 or 16 hours in
duration, depending wupon site) at the prescribed treatment level.
Hydrodynamic conditions {streamflow and lake circulation) are held fixed
for a givem run. Lake concentration levels respond to the transient
input: concentrations near the river mouth increase during the
application period and decrease thereafter, as the material is
transported away from the mouth. The simulation is continued until all
cell concentrations drop below 10 ppb.

To illustrate the methodology employad in simulations of river TFM
applications, a "movie" of one treatment (Saranac River, North Wind) is
shown in Figure 3. 1In this example, the simulation proceeds until all
cell concentrations drop below 50 ppb (i.e., 90 hours). Results are
summarized in the form of a plot of maximum TFM concentration in each
model cell (last plot). Comparing this plot with the 50 ppb standard
defines the spatial extent of the lampricide plume. Plume duration is
defined as the time required (from start of lampricide loading to lake)
for all cell concentrations to drop below the 50 ppb standard.

Simulations such as that shown in Figure 3 are conducted separately
for each of eight wind directions and standard wind load. The
resulting plume maps (cell-maximum concentrations for each wind
direction) are subsequently overlayed and compared to produce a single,
composite grid of cell-maximum concentrations. An example is shown in
Figure 4. The grid is subsequently overlayed on a lake chart and
contours are plotted for the 10, 20, and 50 ppb concentration levels.
Derived in the way, the contours should surround the plume, regardless
of wind speeds and directions which are present at the time of
application, If the wind were from the south, for example, the plume
would tend to £ill the northern portions of the contours.

TFM simulations assume treatment conditions (streamflow, applied
concentration, duration) specified in Table 3. Because the transport
model is linear, simulation results can be rescaled to estimate maximum




TFM concentration contours for other sets of treatment conditions. This
rescaling is performed based upon the total mass of lampricide applied:

Co= C F
Fe= (Q Y Tp )/ ( Q¢ Y T
where,
F = scale factor
under proposed treatment conditions:

Ce = lake lampricide concentration (ppb)

Qe = streamflow (cfs)

Y. = applied lampricide concentration (ppb)
T¢ = duration of application (hrs)

under simulated conditions (as defined in Table 3):

Co = lake lampricide concentration (pph)

Qo = streamflow (cfs) '

Y, = applied lampricide concentration (ppb)
T, = duration of application (hrs)

This rescaling is inaccurate for locations in the immediate vicinity of
the river inflow, but is accurate for defining plume boundaries at 50
and 20 ppb concentration levels.

For example, the maximum concentration grid shown in Figure &4 is
based upon a simulated streamflow of 600 cfs, applied TFM concentration
of 1.5 ppm, and treatment duration of 12 hours. Since concentrations
are displayed with a scale factor of 3, grid values greater then 10
would represent the 50 ppb plume under the simulated treatment
conditions. Suppose that one wanted to use these results to predict the
50 ppb contours for treatment conducted at . .a streamflow of 800 cfs,
applied TFM concentration of 2 ppm, and treatment duration of 12 hours.
The first step is to calculate the scale factor:

F= (600 cfe x 1.5 ppm x 12 hrs) / (800 cfs x 2 ppm x 12 hrs )
= .56

The grid cell value corresponding to 50 ppb would be 50 x .56 / 5 = 5.6,
Thus, all cells in Figure 4 with scaled concentrations equal to ox
exceeding 5.6 would be inside the 50 ppb contour under the modified
treatment conditions. Similar calculations can be performed to estimate
other contour levels based upon the standard grid.




8. SIMULATION OF BAYER-73 APPLICATIONS

Simulation of Bayer-73 applications to delta areas is based upon
the same principles, but is more complicated because the effective
release period of the material must be considered. Bayer-73 is applied
in a granular form (5% active ingredient bound to sand particles with a
water-soluble adhesive)., When the material hits the water, the some
portion of the active ingredient 1s released immediately into the
surface water. The sand particles sink and the remainder of the active
ingredient is subject to slower release,.

One laboratory study (Seeyle,l1987) has shown that less than 35% of
the active ingredient is released inte the water, based upon a single
overnight extraction in Lake Huron water (87 ppm alkalinity). Because
of adsorption equilibria, however, multiple extractions may yield higher
release percentages. Higher percentages may also be released into Lake
Champlain waters because of differences in alkalinity.

Ho and Gloss (1987) describe results of a study of Bayer-73 levels
following treatment In Seneca Lake, New York. A 10l-acre plot in the
vicinity of a lake inflow was treated at the prescribed rate of 100 lbs
Bayer-73/acre (5% active ingredient). Concentrations of Bayer-73 were
followed as a function of depth at nine stations over a 96-hour period
and ranged from <10 to 573 ppb. All concentrations were below 50 ppb
within 48 hours of treatment and below 10 ppb within 96 hours., Direct
transfer of these results to other sites is impossible because
concentration history is partially related to site-specific hydrodynamic
factors (ambient lake currents, tributary inflow), as well as to water
and sediment chemistry.

0f the nine stations monitored by Ho and Gloss, the shallow
nearshore station (F) in the center of the treated region would be the
least subject to hydrodynamic factors. Time series data from this
station are plotted in Figure 5. Surface concentrations peaked at sbout
400 ppb between 4 and 6 hours after treatment. Mid-depth and near-
bottom concentrations peaked at about 300 ppb between 2.5 and 5 hours
after treatment. If the water in the vicinity of this station were
completely isolated (no hydrodynamic exchange with surrounding regions)
and if all of the applied active ingredient were dissolved in the water,
a mass-balance calculation indicates that average Bayer-73 concentration
in the region would peak at 550 ppb. Differences between the observed
300-400 ppb peak and the theoretical maximum wvalue of 5530 ppb are
attributed to transport by lake currents flowing through the region,
permanent binding of the active ingredient to the sand particles (lack
of release), adsorption to lake bottom sediments, and decay in the water
column.

Because effects of transport are potentially significant but were
not quantitatively determined at the Seneca Lake site, the Ho and Gloss
study does not show that less than 100% of the applied active ingredient
was actually released into the water column. The difference between
the observed and theoretical maximum concentrations is small enough to
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be explainable based upon hydrodynamic factors alone. Accordingly, 100%
release iz assumed in simulations of Lake Champlain Bayer-73
applications. Based upon the time series behavior observed by Ho and
Gloss (Figure 5), an effective release period of 6 hours is assumed.

Sensitivity of Bayer-73 plume behavior to assumed release period is
illustrated in Figure 6. In this simulation, Bayer-73 is applied at 100
lbs/acre to 175 acres near the mouth of the Saranac River under a north
wind. Effects of alternmative release periods (24, 12, 6, and 3 hours)
on the simulated maximmm concentrations and plume duration are shown.
Plume duration is defined as the total length of time during which cell
concentration exceeds the 50 ppb criterionm. A longer release period
increases dilution in ambient currents and decreases plume size and
duration. As distance from the application area increases, the
sensitivity of the simulated maximum concentrations to the assumed
release period decreases. This reflects the fact that, over reasonable
time scales for the release and under a given set of ambient conditions,
the basic driving force for the creation of the lampricide plume in the
surrounding lake waters is the total mass of active material applied
{i.e., S5 1bs/acre), not its rate of application or rate of release
(1lbs/acre-hour),

Figure 6 indicates little difference between the 6-hour and 3-hour
simulations, Accordingly, the 6-hour release periocd supported by the Ho
and Gloss study is used in simulating Bayer-73 applications to Lake
Champlain. Projections are conservative (i.e., under-predict cell-mean
concentrations) because less than 100X of the active ingredient will be
released into the water column and the dissolved material will be
subject to various decay mechanisms (photolysis, adsorption, hydrolysis,
uptake) as it is transported away from the application site.

9. SENSITIVITY ANALYSES

Sensitivity analyses indicate that, for a given site, applied
concentration, and river flow, the most important factors determining
the maximum area of the dye or lampricide plume are wind direction and
the effective depth of the mixed layer. Figure 7 illustrates
gensicivities of maximum plume area to wind load and mixed layer depth
for the Saranac River TFM application under a north wind. Mixed depth
and shoreline topography determine the availability of volume for
dilution of the applied loading. Generally, plume areas will be
greatest for wind directions which generate aleong-shore currents and
hinder transport into deeper offshore regiomns, Wind speeds (which
determine transport rates) generally have a strong influence on plume
duration, but a weak influence on plume size and location, for a given
wind direction. ‘

Mechanisms responsible for decreasing - lampricide or dye
concentrations following application include:

(1) dilution in the 1lake volume contained within the
simulation grid;
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(2) transport out of the simulation grid via wind-driven
currents;

(3) transport out of the simulation grid via river flow, as -
it moves through the lake towards the outlet;

(4) transport out of the simulation grid in the main lake
flows to the north (driven by whole-lake water balance);

(5) decay due to various physical, chemical, biological
mechanisms.

Generally, mechanism (1) is dominant for all simulations. Mass-balance
calculations indicate that mechanisms (2) and (3) are relatively
unimportant for the cases studied. Mechanisms (4) and (5) are
potentially important over 1long time scales, but have mnot been
considered in the simulations,

All simulations assume that lampricide behaves conservatively in
the environment, Many studies have shown that TFM and, especially,
Bayer-73 are subject to a number of physical, chemical, and biological
processes which cause removal from the water column. Sediment
adsorption and photolysis are considered to be important decay
mechanisms; half-lives in the range of 2.5-10 days have been reported
(NRCG,1985; Ho and Gloss,1987). Because these mechanisms are not
accounted for, the simulations 1likely over-estimate the areas and
durations of the lampricide plumes following treatment. Sensitivity
analyses indicate that consideration of lampricide decay would generally
have little effect on maximum plume areas (because these are generally
achieved a within one or two days after treatment) but may have
substantial effects on predicted plume duration.

10. DENSITY CURRENTS

The models assume that streams entering the lake are completely
mixed into the lake epilimnion. Differences between inflowing stream
temperature and lake surface temperature, as driven primarily by season,
can create a potential for the inflowing stream to float or sink to lake
layers of similar density. This phenomenon depends upon several
factors, including temperature, flow velocities, stream and lake
topographies (Fischer et al.,1979).

To provide regional perspectives on the driving forces for inflow
density currents, stream and lake temperature records from the St.
Albans Bay area of Lake Champlain have been analyzed. The data consist
of weekly temperature measurements at two locations between 1982 and
1986, as derived from studies of St. Albans Bay being conducted by Water
Resources Research Center of the University of Vermont. Figure 8
compares monthly-average stream and lake surface temperatures.
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Average stream temperatures exceed the lake surface temperatures
only during May. This creates a tendency for inflowing rivers to float
on the lake surface for some distance, until the density gradient is
dissipated by wind, other sources of turbulence, and thermal diffusion.

Stream temperatures average less than 1 deg-C below lake surface
temperatures during June. As the season progresses from Jume through
October, the stream becomes increasingly cool relative to the lake
surface and a driving force for inflow plunging develops. During
September, the wmonth proposed for lampricide treatmeunt, the average
stream temperature (14 deg-C) is 5 degrees cooler than the lake surface
(19 deg-C). Review of vertical temperature profiles from the Kingsland
Bay area of Lake Champlain (Figure 9, from Smeltzer,1985) indicates that
the l4-degree contour is found in a depth range of 15 to 25 meters
during September.  Thus, if no entrance mixing is involved, September
streamflow would tend to plunge to the 15-25 meter level, spread
laterally at that level and eventually dissipate. In reality, depending
upon stream velocity and topography, some entrance mixing would tend to
occur and cause entrainment of warm lake surface waters, until the

*plunge point" is encountered (Fischer et al.,f1979). With entrance
mixing, the plunging inflow stream would seek a shallower depth range
and be incorperated sooner into the mixed layer.

Effects of density currents are apparent in some of the dye study
results, Mean and maximum dye concentrations are displayed by site and
depth interval in Figure 10, Concentrations have been rescaled to an
applied concentration of 1000, so that a wvalue of 100 represents a 10-
fold dilution of inflowing river water. 'As described by Meyers (1986),
dve concentrated at the lake surface during May 1986 plume studies at
the Great Chazy and Saranac Rivers (1 and 6 in Figure 10), This is
attributed to stream temperatures which were 6-10 deg F warmer than lake
surface temperatures (Table 3)., During the August surveys, streams were
slightly cooler than lake surface (1-3 deg F) and the dye was mixed to
greater depths. '

Seasonal wvariacions may influence projections of lampricide
behavior based either upon the dye studies (Meyers,1986) or upon the
two-dimensional models discussed below. The dye studies were conducted
during May and August, as compared with the proposed mid-to-late
September lampricide treatment period. Because of differences in inflow
plunging potential and mixed layer depths, the dye studies are limited
analogues for plume behavior during the proposed treatment period.

- Additional interpretations of model results, given the potential for

density currents, are presented in the Sections 13-18.
11. EMPIRICAL PLUME FROJECTIONS

To supplement TFM plume projections based upon the models and upon
contour plotting (Meyers,1986), an alternative projection technique
employing dye measurements has been developed and applied to each site.
The technique is based upon two fundamental concepts which result from
the linearity of mass transport:
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(1) Under a given set of hydrodynamic conditions, plume
response is related to the total mass of applied material
(streamflow x applied concentration x duration).

(2) Once the material has been applied, maximum lake
concentrations decay exponentially as a function of time
and distance from the river inflow, at rates which
reflect ambient hydrodynamics.

The first concept permits rescaling of dye concentrations measured in
the lake to TFM concentrations under prescribed treatment conditions,
based upon the ratio of TFM load te dye load. This rescaling is
inaccurate at low travel distances and times (low dilution ratios for
the inflowing river), The second concept permits approximate
extrapolation of maximum plume concentration as a function of time and
space on a semi-log scale. The exponential decay rate reflects the net
influences of all transport processes operating during the study peried.
This is an approximation because effective dilution rates may vary with
distance from the inflow.

The method is ifllustrated in Figure 11 using data from the May/June
dye study at the Saranac site. Measured dye concentrations are rescaled
to TFM concentrations based upon the TFM/dye load ratio. The logarithms
of projected TFM concentrations are plotted as a function of time and
distance from the river inflow. Time is measured relative to the start
of plume entry to the lake. Distance is calculated from the latitude
and longitude coordinates of the dye measurements relative to the river
mouth. To illustrate vertical aspects of plume behavior, different
symbols are used to represent surface (x) and subsurface samples (o).

Projections of time and distance required to reach 50 and 20 ppb
maximum concentration levels are based upon extrapolations of straight

"lines defining the wupper portions of the scatter plots. These are

illustrated by the dashed lines in Figure 1l1l. The linearity of these
lines is consistent with the exponential decay discussed above ((2)
above}.

One advantage of this technique is that it is simple and easily
implemented, given a data file containing dye measurements as a function
of latitude, longitude, depth, and time. It avoids the complex spatlal
averaging and interpolation procedures required to generate contour
diagrams, Spatial analysis is still required, however, to project
directional aspects of the plume,

The major limitation of the technique is that the projsctions are
valid only for the hydrodynamic conditions under which the dye study
occurred., Projections may differ for wind speeds, wind directions, or
lake mixed depths which are significantly different from those
encounterad during the dye study. Such wvariations can only be
considered by conducting multiple dye studies or by using simulation
models of the type described below.
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At long distances and times <(high dilution factors and low
concentrations), the dye measurements are increasingly sensitive to
variations in background fluorescence. As discussed above, very
conservative (low) wvalues for background fluorescence have been used;
this may lead to underestimation of decay rates and overestimation of
the plume durations and distances using this technique.

Despite limitations, this technique is useful for projecting and
summarizing dye plume behavior as a function of time, distance, and
depth. Based upon comparison of surface (x) and subsurface (o) samples,
Figure 30 shows that the dye plume was initially concentrated at the
surface (high concentrations at short times and distances from the river
inflow). As time and distance increased, however,; the dye became more
evenly distributed with depth.

12, RESULTS

Table 3 summarizes treatment conditions for each site, as
prescribed by NYDEC. The upper limit of the specified flow range has
been used in the simulation of TFM and Bayer-73 treatments, Methodology
for rescaling simulation results to project plumes resulting from other
streamflows, concentrations, or durations is discussed above., Projected
plume areas (maximum TFM or Bayer-73 concentration > 50 ppb), distances,
and durations are displayed for each treatment and wind direction in
Figures 12,13, and 14, respectively.

The following summary of figure numbers will assist readers in
locating key results for each site:

Chazy  Saranac Ausable Lewis Putnam

Model Region 15 25 40 53 63
Finite Element Mesh 16 26 41 54 64
Circulation Patterns 17-18 27-28 42-43 55-56 65-66
Transport Model Grid 19 29 44 57 67
Empirical Projections 20 30-31 45 58 68
Dye Simulations 21 32-33 46 59 69
Plume Projections 22-24 3439 47-52 60-62 70-72

Detailed results are discussed below.
13. SITE 1 - GREAT CHAZY RIVER

Model results for Site 1, Great Chazy River, are summarized in the
following Figures:

15 Model Region

16 Finite Element Mesh

17 Circulation Patterns - North Wind

18 Circulation Patterns - Northeast Wind

19 Transport Model Grid

20 Empirical Projection of TFM Plume Based upon Dye Meas.
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21 Cbserved and Predicted Maximum Dye Concentrations
22 Maximum TFM Concentrations vs. Wind Direction

23  Cell Maximum TFM Concentrations

24  Maximum TFM Concentration Contours

The hydrodynamic and mass transport models have been developed, tested,
and applied to the Great Chazy site using methods described in the above
sections. Results and unique features of this site are discussed below.

Plume areas and durations projected for the Great Chazy TFM
treatment generally exceed those projected for other sites because of
two primary factors: the relatively high quantity of TFM applied (1885
lbs, Table 3) and the shallow nature of this lake region., Depths range
from <1 to 4 meters in King Bay and shoreline areas to the south within
the projected plume area (Figures 15, 19, 24). Becatise of shallow
depths, dye or lampricide applied to the river is potentially
transported over relatively long distances before being diluted to 50
and 20 ppb concentration levels. Shallow depths would also increase
exposure of TFM to bottom sediments and light, however; this would tend
to increase losses due to adsorption and photolysis mechanisms and
thereby reduce the spatial and temporal extent of the plume.

The Great Chazy dye study was conducted in late May of 1986.
Because the dye was applied 5.5 mlles above the river mouth, there was
considerable delay (29 hrs) and dispersion of the plume in the river
before it reached the lake. To account for this, the effective loading
period used in the dye simulation has been increased from 12 to 36 hrs
and the effective inflow concentration has been reduced by a factor of
3, based upon ohserved dispersion of the dye at the river mouth. In
simulating TFM applications, the effective loading period has been
increased from 16 to 48 hours and the concentration at the mouth of the
river has been reduced from 3.5 to 1.16 ppb. ‘This assumes that
dispersion in the river during the TFM application will be similar to
that observed during the dye study. Because they depend primarily upon
the total mass of TFM applied, projections of maximum TFM plume areas
are insensitive to a reasonable degree of dispersion in the river above
the lake.

Because the inflowing river averaged about 10 degrees F warmer than
the lake surface temperature, the plume was initially concentrated at
the lake surface. Figure 20 shows that at short distances from the
inflow, maximum surface dye concentrations (x) were much higher than
maximum subsurface concentrations (o). Field observations indicate that
the dye was initially mixed only to the 1-2 meter level (Meyers,1986).
At long distances (> 300C meters), however, maximum dye concentrations
were similar in surface and subsurface samples. This indicates that
vertical mixing increased as the plume proceeded south, driven by the
northern winds which were dominant after the dye entered the lake.
Northern winds generated high flow velocities along the lake shore
{(Figure 17). '
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Dye plume simulations under three wind conditions are compared with
observed surface and subsurface concentrations in Figure 21, Based upon
the observed dye distribution, simulations assume a maximum mixed layer
depth of 1.5 meters. The simulation using the resultant wind (Noxth,
Load Factor = 1.16) agrees best with the observations and successfully
predicts the southern extent of the plume.

The proposed Great Chazy TFM treatment will occur at a streamflow
of 150 cfs, applied concentration of 3.5 ppm, and duration of 16 hours.
Prejected cell maximum TFM concentrations are displayed as a function of
wind direction in Figure 22, Generally, N, NW, or NE winds would be
most conducive to transport of the applied TFM. Based upon simulation
of northern winds, the projected 50 ppb contour would extent south to
the mouth of the Little Chazy and the 20 ppb contour would extend teo
Trembleau Point (Figure 24).

Under other wind conditions (including dominant southern winds),
the Great Chazy TFM plume would tend to remain within the King Bay
region, The long plume durations (200-300 hours) predicted for SE, S,
and SW winds (Figure 14) reflect "trapping” of material in extreme
northern portions of the King Bay. Actual plume durations would be
lower because of decay mechanisms which are not considered in the
simulations.

14, SITE 2 - SARANAC RIVER

Model results for Site 2, Saranac River, are summarized in the
following Figures:

25 Model Region

26 Finite Element Mesh

27 Circulation Patterns - North Wind

28 Circulation Patterms - Northeast Wind

29 Transport Model Grid

30 Empirical Projection of TFM Plume (June)

31 Empirical Projection of TFM Plume (August)

32 Observed and Predicted Maximum Dye Concentrations (June)
33 Observed and Predicted Maximum Dye Concentrations (August)
34 Maximum TFM Concentrations vs. Wind Direction

35 Cell Maximum TFM Concentrations

36 Maximum TFM Concentration Contours

37 Maximum Bayer-73 Concentrations vs. Wind Direction

38 Cell Maximum Bayer-73 Concentrations

39  Maximum Bayer-73 Concentration Contours

The hydrodynamic and mass transport models have been developed, tested,
and applied to the Saranac River site using methods described in the
above sections. Results and unique features of this site are discussed
below.

During the May 31-June 1l dye study, the inflowing river averaged 7-
11 degrees F warmer than the lake surface temperature, the plume was
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initially concentrated at the lake surface. Figure 30 shows that at
short distances from the inflow, maximum surface dye concentrations (x)
were much higher than maximum subsurface concentrations (o). At long
distances (> 3000 meters), however, maximum dye concentrations were
similar in surface and subsurface samples. This indicates that vertiecal
mixing increased as the plume traveled out into the lake. Generally,
the pattern is similar to that observed at the Great Chazy, except
transport distances were somewhat shorter at Saranac because of greater
depths and different wind conditions.

During the August dye study, inflow and lake surface temperatures
were similay and the appeared in svbsurface samples at shorter times and
distances from the inflow (Figure 31). A tendency for subsurface dye
concentrations to exceed surface wvalues developed as the plume
progressed (e.g., times 15-20 hours, distances 500-1000 meters). This
may have been caused by plunging of the river inflow; based upon surface
temperature measurements at the mouth of the river, however, the river
was only 0-2 degrees F cooler than the lake surface temperature and thus
there was little driving force for development of denmsity currents.
Temperature measurements in the river above the lake would provide an
improved basis for evaluating the potential for density currents.

Another possible explanation for the dye distributions observed
during the August survey involves extraneous sources of fluorescence in
the region, which would tend to interfere with the dye measurements.
Surveys of the Cumberland Bay region conducted prior to dye applications
indicated occasional "hot spots" of high fluorescence which could not be
readily explained (Meyers,J.A., NYDEG, Pers. Comm., 1987).

As discussed above (Section 3), transport directions often vary
vertically within the mixed layer owing to drift and slope currents. A
third explanation for the observed vertical behavior of the dye during
the August study invelves initial mixing, followed by shearing and
transport in different directions within the upper and lower portions of
the mixed layer. Under the southern winds which were dominant during
the dye study, predicted net flow velocities in the wvicinity of the
river mouth are towards the north and east (Figure 27). The surface
plume would tend to follow this path. Reverse currents on the bottom of
the mixed layer, may have transported dye towards the south, however,
Contour plots of maximum surface and subsurface dye concentrations
(Figure 33) suggest that maximum dye concentrations were greater in
regions south of the river mouth,

Figure 31 reveals two outliers in the log(TFM) vs. distance plot.
These were derived from a vertical profile taken south and east of the
river inflow (Column 6, Row 16 of the transport grid, Figure 29)
approximately 30 hours after the dye plume reached the lake and 2500
meters from the river mouth. Dye concentrations varied with depth as
follows (samples SB108, SB109, SB1l0):

Depth (m) 0 1.5 3
Dye (ppb) .07 44 1.3
18




Other samples in the same general vicinity showed less variation with
depth and maximum concentrations less than .5 ppb. The field log
indicates that the maximum depth at this location was 3 meters. If this
is true, entraimment of organic bottom sediments may explain the
elevated fluorescence of the bhottom sample. The recorded maximum depth
is inconsistent with the lake navigational chart (Figure 23), which
indicates maximum depths in the range of 8.,5-11 meters in this region.

Dve plume simulations under three wind conditions are compared with
observed surface and subsurface concentrations in Figures 32 and 33 for
the June and August surveys, respectively. During the June survey, the
dye apparently tracked further to the east (reaching Cumberland Head)
than predicted by any of the simulations (Figure 32). It is possible
that actual winds were more from the west or southwest than indicated by

the airport or site measurements. Agreement between observed and
predicted peak dye concentrations is generally good for all simulatiouns
of the August release (Figure 33). The exception to this 1is the

anomalous profile discussed above,.

The proposed Saranac River TFM treatment will occur at a streamflow
of 600 cfg, applied concentration of 1.5 ppm, and duration of 12 hours.
Projected cell maximum TFM concentrations are displayed as a function of
wind direction in Figure 34. Generally, N or NW winds would be moest
conducive to transport of the applied TFM. Based upon simulation of
northern winds, the projected 50 ppb contour would extent south to the
oll terminals and the 20 ppb contour would extend to Bluff Point (Figure
363,

Under other wind conditions, the Saranac TFM plume would tend to
remain within the Cumberland Bay region. The long plume durations (120-
140 hours) predicted for SE, S8, SW, and W winds (Figure 14) reflect
"trapping” of material in extreme northern portions of the Cumberland
Bay. Actual plume durations would be lower because of decay mechanisms
which are not considered in the simulations.

The proposed Bayer-73 treatment of the Saranac River mouth will
involve application of 100 lbs/acre of granular Bayer-73 to 175 acres.
Plume projections are displayed in Figures 37-39, Because the total
mass of active ingredient applied (875 1lbs, Table 3) is less than the
mass of TFM applied (2424 1lbs), Bayer-73 plume projections fall within
the TFM applications. Sensitivity to wind direction is qualitatively
similar to that discussed above for TFM. Because Bayer-73 is less
stable (more subject to adsorption and photolysis) than TFM, projected
plume areas and durations are alsc more conservative.

15. SITE 3 - AUSABLE RIVER

Model results for Site 3, Ausable River, are summarized in the
following Figures:
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40  Model Region

4] Finite Element Mesh

42  Circulation Patterns - North Wind

43  Circulation Patterns - Northeast Wind

44  Transport Model Grid

45  Empirical Projection of TFM Plume Based upon Dye Meas.
46  Observed and Predicted Maximum Dye Concentrations
47  Maximum TFM Concentrations wvs. Wind Direction

48  Cell Maximum TFM Concentrations

49  Maximum TFM Concentration Contours

50 Maximum Bayer-73 Concentrations vs, Wind Direction
51 Cell Maximum Bayer-73 Concentrations

52 Maximum Bayer-73 Concentration Contours

The hydrodynamic and mass transport models have been developed, tested,
and applied to the Ausable River site using methods described in the
above sections. Results and unique features of this site are discussed
below,

In contrast to the other treatment sgites, which discharge into
sheltered bays, the Ausable River discharges into a region which is
directly exposed to the open lake (Figure 40)., Lake depths drop off
rapidly about 600 meters east of Ausable Point. Material transported
east from the mouth should be dispersed rapidly. Potential transpert
distances are greater, however, iIn the shallow shoreline regions
extending from Prey’s Marina on the north te Port Kent on the south., In
simulating dye and TFM applications, flow iz assumed to be split equally
between the upper and lower mouths. Projections of 20 and 50 ppb plume
contours are insensitive to this assumption.

The Ausable dye study was conducted in early August 1986 under
south winds, A vertical profile taken near the river mouth 4 hours
after the plume reached the lake indicated good initial wmixing with
depth, with dye concentrations ranging from 1.2 to 1.6 ppb over a 12
meters of depth. Stream temperatures were only about 1 degree F cooler
than the lake surface, so there was little driving force for development
of density currents.

Because of the exposed nature of Ausable Point and good initial
nixing, dye concentrations dropped off rapidly as a function of time and
distance (Figure 45). The dye data are limited, however, by the lack of
observations during the initial 1loading period (0-10 hours). ' One
outlier is evident at 24 hours after dye plume entry and distance of
1500 meters from the Upper Mouth. This observation was taken in shallow
waters (Depth = 1 meter) northwest of Ausable Point. It is possible
that this measurement reflected dye loadings from the Little Ausable
River, which was studied simultaneously. The timing of the measurement
coincided with the arrival of the trailing edge of the Little Ausable
dye plume (Mevers,1986) and the measurement was taken approximately 500
meters from the river mouth. Agreement between observed and predicted
10-fold and 100-fold dilution plumes 1s reasonable for all simulated
wind conditions (Figure 46).
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Because the offshore open lake waters are deep at this site
relative to the assumed S-meter mixed depth, the projections of offshore
transport, particularly the 20 and 10 ppb contours, are likely to be
very conservative, While a potential for inflow plunging exists at
this site under fall treatment conditions; this potential would be
reduced by mixing which would occur as the plume travels across shallow
shoreline regions with relatively high ambient current wvelocities
(Figures 42,43) before reaching thermally stratified regions.

The proposed Ausable River TFM treatment will occur at a streamflow
of 400 cfs, applied concentration of 1.6 ppm, and duration of 12 hours.
Projected cell maximum TFM concentrations are displayed as a function of
wind direction in Figure 47, The plume is driven south in shallow
shoreline regions under N, NW, or W winds and is driven north under E,
SE, or 8§ winds. Other wind conditions are more conducive to transport
east into the open lake. Over a range of wind conditions, the simulated
50 ppb TFM plume extends from Port Kent on the south to the mouth of the
Little Ausable River on the north. Because of open lake exposure,
projected plume durations are relatively short (less than 40 hours for
all wind directions, Figure 14).

The proposed Bayer-73 treatment of the Ausable River mouth will
involve application of 100 lbs/acre of granular Bayer-73 to 250 acres.
Plume projections are displayed in Figures 37-39. Because the total
mass of active ingredient applied (1250 lbs, Table 3) is less than the
mass of TFM applied (1725 lbs), Bayer-73 plume projections fall within
the TFM applications. Sensitivity to wind direction is qualitatively
similar to that discussed above for TFM. Because Bayer-73 1is less
stable {(more subject to adsorption and photolysis) than TFM, projected
plume areas and durations are also more conservative,

16. SITE 4 - LEWIS CREEK

Model results for Site 4, Lewis Creek, are summarized in the
following Figures:

53 Model Region

54  Finite Element Mesh

55 Circulation Patterns - North Wind

56 Circulation Patterns - Northeast Wind

57 Transport Medel Grid

58 Empirical Projection of TFM Plume Based upon Dye Meas.
59 Observed and Predicted Maximum Dye Concentrations

60 Maximum TFM Concentrations vs. Wind Direction

6l Cell Maximum TFM Concentrations

62 Maximum TFM Concentration Contours

The hydrodynamic and mass transport models have been developed, tested,

and applied to the Lewis Creek site using methods described in the above
sections. Results and unique features of this site are discussed below.
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Lewis Creek empties into Hawkins Bay, a shallow lake region inside
MeDonough Point and Long Point (Figure 53). Under dominant south or
southeast winds, the hydrodynamic model predicts a counter-clockwise
circulation pattern in Hawkins and Town Farm Bay region (east of
Thompson'’s and McDonough Points, Figures 55-56).

Direct measurements of current velocities were taken on several
occasions during August and September of 1986 in offshore regions of
Hawkins Bay (west of Gardiner Island) (Laible and Walker, 1987).
Comparison of measured and modeled current velocities indicate that the
hydrodynamic model captures the general structure of circulation
patterns in the region, but under-predicts current magnitudes, typically
by a factor of two or more. Under-estimation of effective wind speeds
driving lake circulation and/or the effective wind shear coefficient may
contribute to differences between observed and predicted current speeds.
The above field study results suggest that actual transport rates would
be higher and plume durations would be shorter than those predicted at
this site. Since the same methodology and wind shear coefficient have
been used in all hydrodymamic simulations, this conclusion may hold for
other sites as well,

Dense stands of aquatic weeds (water milfoil) are present in
shallow regions of Hawkins Bay during the summer. These likely impede
mixing of the creek inflows and alter the predicted circulation patterns
shown in Figures 55 and 56. Because the hydrodynamic model does not
account for the presence of these weeds, initial mixing of creek inflows
is probably overestimated. This has minimal influence on simulation of
50 and 20 ppb plumes, however, because they generally extend beyond the
weed-infested regions, Weed beds would have less influence under fall
treatment conditions compared with summer dye study conditions,

The Lewis Creek dye study was conducted in mid August of 1986 under
variable winds with a resultant direction from the west, Interpraetation
of dye study results at this site is complicated by the high storm flows
which were present during the study and by variations in background
fluorescence in the Hawkins and Town Farm Bays owing to turbid inflows
from Lewis and Little Otter Creeks. Another limitation is lack of data
from shallow regions of Hawkins Bay near the creek mouths.

The vertical distribution of fluorescence at this site was complex.
At some locations and times, peak concentrations were found at depths of
7.6 meters. At others, the dye was well-mixed to depths of 13 meters.
Still at others, the dye was concentrated at the surface (0-3 meters).
Density currents attributed to cold storm inflows, wvariations in
background fluorescence, entraimment of organic material in bottom
samples, and shearing into surface and bottom currents likely
contributed to the complex vertical distribution observed at this site,
The stormy conditions provided a less than ideal data set for model
testing and plume projection.

Decay of peak dye concentration as a function of time and distance
was reasonably exponential (Figure 58). Concentration projections at
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long times and distances are probably over-estimated because actual
background fluorescence levels were higher than the assumed wvalue (.02
ppb). Model predictions for various wind conditions show the 10-fold
and 100-fold dilution contours further to the east and south than the
measurements indicate (Figure 39). This may be attributed to the
presence of weed beds and other limitations in the dye data discussed
above. The measured and predicted plume areas are in good agreement.

The proposed lewis Creek TFM treatment will occur at a streamflow
of 50 cfs, applied concentration of 6.5 ppm, and duration of 12 hours.
Projected cell maximum TFM concentrations are displayed as a function of
wind direction in Figure 60. Under dominant SE, S, or SW winds, the
plume is transported north and east on counter-clockwise currents
towards Town Farm Bay. North winds cause +transport west towards
McDonough Point. The projected maximum 50 ppb contour for all wind
conditions (Figure 62) fills Hawkins Bay (inside McDonough and Long
Points). The 20 ppb contour extends from the mouth of Kingsland Bay
into Town Farm Bay at a point east of Point Bay Marina.

Under typical wind loads, projected plume duration for the Lewis
Creek treatment ranges from 20 to 80 hours (Figure 60). Actual plume
durations would be lower because of decay mechanisms which are not
considered in the simulations and because observed current speeds are
under-predicted by the hydrodynamic model.

17. SITE 5 - PUTNAM CREEK

Model results for Site 5, Putnam Creek, are summarized in the

following Figures:

63 Model Region

64 Finite Element Mesh

65 Circulation Patterms - North Wind

66 Circulation Patterns - Northeast Wind

67 Transport Model Grid

68 Empirical Projection of TFM Plume Based upon Dye Meas.
69 Observed and Predicted Maximum Dye Concentrations

70 Maximum TFM Concentrations vs. Wind Direction

71  Cell Magimum TFM Concentrations

72 Maximum TFM Concentration Contours

The hydrodynamic and transport models have been developed, tested, and
applied to the Putnam Creek site using methods described in the sbove
sections, Results and unique features of this site are discussed below.

Putnam Creek discharges 1inte a narrow portion of South Lake
Champlain (Figure 63). The potential for transport of lampricide over
long distances is limited by the relatively small quantity of TFM
applied (686 1bs vs. 876-2424 1lbs for other sites, Table 3) and by
dilution in lake currents and advective flows. Moving east from the
mouth, lake contours follow a shallow shelf and subsequently drop of
sharply into the main channel (l1l-14 meters). Because of lake advection
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and dominant southern winds, plume transport would most likely occur
towards the north. Moving north in the main channel, maximum depths
decrease from 1l-14 meters to 7-9 meters in the regiom north to Crowm
and Chimney Points. The likelihcod that this region will be thermally
stratified under fall treatment conditions is low.

Advection from south to north, as driven by inflows from the
southern watersheds, is a potentially important scurce of dilution which
has not been considered in the simulations discussed below. Based upon
drainage area ratio (158 vs. 2900 kmz), lake advection would provide an
initial dilution ratio of 18 for the applied TFM. This would reduce the
applied TFM concentration from 8.5 to .47 ppm, once the streamflow is
mixed with the lake advective flows. Further decreases would occur as a
result of wind-driven currents and volume dilution considered in the
simslations. '

The Putnam Creek dye study was conducted in mid August of 1986
under light southern winds. Interpretation of dye study results at this
site is complicated by the high storm flows which were present during
the study and by variations in background fluorescence owing to the
turbid character of the South Lake. Because of the cold storm flows,
the river was roughly 3 degrees F cooler than the lake surface. Near
the river inflow, the dye was sharply concentrated at a depth of 3
meters. As time and distance from the dye loading increased, a more
uniform distribution with depth was achieved (Figure 68).

The observed 100-fold dilution contour was located near Yellow
House Point, about 2000 meters north of the creek inflow (Figure 69).
Variations in background fluorescence may cause over-statement of the
observed dye plume. Model prejections for a maximum mixed-layer depth
of 5 meters put this contour about 1200 meters north of the inflow.
Lack of complete mixing in the lake cross-section near the river inflow
likely contributes to the under-estimation of the plume. Additional
simulations assuming a maximum mixed-layer depth of 2 meters show better
agreement with the observations. This does not physically describe the
situation, however, because the dye was well mixed to depths up teo 6
meters at the northern edge of the plume; i.e., lack of mixing occurred
only near the river inflow.

The proposed Putnam Creek TFM treatment will oceur at a streamflow
of 30 cfs, applied concentration of 8.5 ppm, and duration of 12 hours.
Projected cell maximum TFM concentrations are displayed as a function of
wind direction in Figure 70. Consideration of lake advection would
shift the plume directions towards the north and provide additiomal
dilution. The predicted maximum 50 ppb contour extends from the town of
Crown Point on the south to below Yellow House Point on the north
(Figure 72). These simulations assume a maximum mixed layer depth of 5
meters under proposed treatment conditions, Assuming a more
conservative maximum mixed-layer depth of 2 meters places the 50 ppb and
20 ppb contours at the 20 and 10 ppb contours, respectively, shown for
the S-meter mixed depth simulations in Figure 72.
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Under typical wind loads, projected 50-ppb plume duration for the
Putnam Creek treatment ranges from 50 to 120 hours (Figure 60). Actual
plume durations would be lower because TFM decay mechanisms and dilution
in lake advective flow are not considered in the simulations.

18. CONCLUSION

The plume projections described above are conservative estimates of
transport resulting from lampricide applications under the prescribed
treatment conditions. This section reviews important concepts that
should be considered in interpreting the results. Plume projections are
also compared with those developed by Meyers (1986) based directly upon
dye measurements,

Assuming that significant density currents do not develeop, plume
area projections are conservative because a maximum mixed layer depth of
5 meters has been assumed, whereas actual mixed layer depths exceeding
12 meters are anticipated for September conditions. The assumed mixed
layer depth has a greater influence on simulations of deeper lake areas
{e.g., Ausable) than on simulations of shallower lake areas (e.g., Great
Chazy}.

Predicted contours refer to the mean concentration in the mixed
layer at & given latitude and longitude. Individual samples taken
within the mixed layer at given location will be higher or lower than

the predicted mean value, Testing of the predicted mean dye
concentrations against the observed maximum concentrations in each model
cell considers this source of wvariability. Such comparisons are

hindered by variations in background fluorescence, which influence the
cbserved maximum concentrations, particularly at high dilution ratios
{(low dye concentrations).

Additional factors contributing to conservatism in the projections
include:

(1) Lawpricide decay mechanisms are not considered.

(2) Field studies have shown that current speeds predicted by
the hydrodynamic model are lower than measured values, at
least at the Lewis Creek site (Laible and Walker, 1987).

(3) Transport and dilution attributed to lake advective flow
(as driven by the whole-lake water balance) are ignored.

Consideration of these factors would have more influence on predicted
pPlume durations than on plume locations and maximum areas.

Figure 73 provides additional information on plume duration. For
each treatment, the logarithm of the maximum TFM or Bayer-73
concentration (maximum of eight wind directions) is plotted against time
in 50-hr increments., As discussed above, the long tails on the Great
Chazy and Saranac decay curves reflect trapping of material in the
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extreme northern portions of King and Cumberland Bays, respectively,
under south winds, The relatively slow decay of the Putnam TFM curve
reflects lake morphometry; because dilution in the lake advective flow
has been ignored, however, the Putnam decay curve over-estimates lake
concentrations, particularly at long times which would facilitate mixing
of the plume with the 1lake cross-section. Potential effects of
lampricide decay are repregsented in Figure 73 by super-imposing decay

"rates of .07 and .23 day'l on the simulated dilution curve for each

treatment, These rates correspond to half-lives of 10 and 3 days,
respectively, a reasonable range for decay of TFM or Bayer-73 attributed
to photolysis and sediment adsorption (NRCC,1985; Ho and Gless,1987).

One limitation of the maximum concentration grids (e.g., Figure 23)
is that they may under-estimate maximum concentrations in the immediate
vicinities of the river inflows because of possible incomplete mixing.
This 1limitation should not influence peak concentrations in the

vieinities of the projected 50 and 20 ppb contours, however.

. Another, potentially more severe limitation is the possibility that
density currents will develop under fall treatment conditioms because of
temperature differences between the inflowing river and lake surface.
Such conditions would tend to increase the time and distance required
for the plume to mix with the water column and reach 50 and 20 ppb
concentration levels. To a degree, the shallow (5 meter) mixed depth
assumption compensates for errors due to lack of complete mixing.
Assuming a (very conservative) maximum 2-meter mixed depth shifts the
maximum concentration contours for each treatment outward, but in each
case the 20 ppb contour for a 2-meter mixed depth falls inside of the 10
ppb contour shown for a 5-meter mixed depth.

The significance of inflow plunging would depend upon site
characteristics (in particular, stream velocity, shoreline and bottom
topography) and upon the presence of deep water intakes in the lake
region. Additional modeling studies could be done to evaluate
potential dilution above and below the inflow plunge point. Because of
extensive data requirements and limitations in the state-of-the-art,
however, a full three-dimensional medeling effort would not necessarily
yield results which are more accurate or reliable than those derived
from the two-dimensional models. A fall dye study is recommended to
provide a basis for testing model projections under conditions which are
more representative of the proposed treatment conditions.

Meodel projections of maximum plume area are compared with results
derived directly from the dye studies (Meyers,1986) in Figure 73. The
sketched contours of dye concentration were developed by Meyers using a
contour plotting program. The shaded areas represent the maximum 50 ppb
TFM contour based upon simulation of eight wind directions.

To compare the projections, the dye or TFM concentrations have to be
rescaled based upon the ratio of dye load to TFM lcad (see Table 3).
Based upon the loading ratio, the dye concentration contour
corresponding to the 50 ppb TFM contour can be caleculated for each site.
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As shown in Figure 73, these dye concentrations are .09 ppb for Great
Chazy, .12 ppb for Saranac (August), .14 ppb for Ausable, .20 ppb for
Lewis, and .15 ppb for Putnam.

Note that the dye projections reflect lake conditions (wind, mixed
depth) which were present during the fleld study, whereas the model
projections reflect maximum wvalues for eight wind directions and a
maximum mixed layer depth of 5 meters. When these differences are
considered, the projections are generally consistent. Results for each
site are described below,

For the Great Chazy, the 50 ppb TFM contour should correspond to
the .09 ppb dye contour. As shown in Figure 73, however, the model
projection more closely follows the .15 ppb contour. This difference is
explained based upon differences in mixed layer depth between the dye
study and the simulated fall treatment. As discussed above, the dye
floated on the surface (< 2 meters) and did not mix vertically, except
at long distances and times from the inflow. The model simulations are
based upon a maximum 5 meter mixed depth. Thus, the simulated plume
(shaded area) falls well inside the .09 ppb dye contour for the Great
Chazy.

At the Saranac River site (August), the 50 ppb TFM contour should
correspond to the .12 ppb dye contour. Results for the June survey are

similar (not shown). Because of the effects of different wind

directions, the model projections span a range of contours. The
southern portion of the model plume reflects simulation of nerthern
winds. For south winds representative of the dye study, model
projections correspond roughly to the 0.20 ppb dye contour. Some of
this inconsistency may be attributed to effects of wvariations in
background fluorescence and the relatively low resolution of the Saranac
dye study for detecting high dilutions of the river inflow. Because of
the inconsistency between the projections, the Saranac site is a likely
candidate for the fall dye study recommended above.

Agreement between the simulated Ausable TFM plume and the .14 ppb
dye contour is good. The southern area of the model plume extends well
beyond the .05 ppb dye contour because of effects of northern winds
which were not present during the dye study.

Agreement between the simulated Lewis Creek TFM plume and the .20
pPprb contour is also good., The dye study was conducted under shifring
westerly winds, Simulation of southern and northern winds causes the
plume to extend beyond .20 ppb contour to areas further west and north,
but generally within Hawkins Bay.

The Putnam Creek results are also consistent. The shaded model

plume coincides with the predicted .15 ppb dye contour. The dye study
was conducted under prevailing southerly winds.
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Figure 1
Lake Champlain Study Sites
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Burlington Airport, 3-Hr Observations, May-September 1986

Figure 2

3 -Day Moving-Average Wind Load Factor
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Figure 4

Site: Saranac River (Example)
Cell Maximum TFM Concentrations

Composite Projectibns for Eight Wind Directions, Units = ppb/5
Flow = 600 cfs, Applied TFM Conc. = 1.5 ppm, Duration = 12 hrs
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Figure 5

Observed Water Column Responses to Bayer-73 Treatment
Ho and Gleosg (1987) Station F .
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Figure 6

Sensitivity of Simulated Lake Response to Bayer-73 Release Period
Saranac River Treatment, North Wind, Conc. Units = ppb/5
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Figure 7

of Plume Area and Duration to Wind lLoad and Mixed Depth
Saranac River TFM Treatment
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Figure 8
Seasonal Variatione in Stream and Lake Surface Temperatures

‘St. Albans Bay, Lake Champlain, 1982-1986 Monthly Means

SIS TR T A RIS
etelelelel ettt lalelelelnlelelels

o
PSSR ANR

-

<]

L

Peteleledeletelatelele

‘.‘ W o
sleleletelololeletoleleletalelolelolelolelelele

T T O
BLLEOSELOES]

{doo¥a LFMIL) MOTINY WIATH [
(ANWIST AQVT A2¥I) DAV

24

22 4

290

18 ~

3 T LI LI ¥ T L1 T 1
w -y
-t -t

(0 sTTDHE) TANIVIIINIL

LY — - . . A (=3
-

HONTH




438W3L1d3S isnonv ane aNne AYN Y4V

\

2l

gt

Figure 9

T

0
(W) H1d3Q

Lake Champlain Temperature vs. Depth and Season

(0c) 3YNLVHIINIL



Figure 10

Mean and Maximum Scaled Dye Concentrations vs.

Site and Depth Range

Concentration Units Scaled to River Application of 1000

Sites:
1-Great Chazy, 2-Saranac (August), 3-Ausable, &4-Lewis,

5-Putnam, 6-Saranac (June)
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Figure 11
Site: Saranac-June (Example)

Empirical Projection of TFM Plume Based upon Dye Measurements

DISTANCE

TIME = Hours from Entry of Lampricide Plume to Lake
DISTANCE = Distance from River Inflow (Meters)
LOG TFM = Logig (Projected TFM Conc., ppb), Rescaled from Dye Data
TFM CONC = Measured Dye Conc. x TFM Load / Dye Load
LOAD = Streamflow x Applied Comec. x Treatment Duration
Symbols: x = surface samples, o = subsurface samples
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Figure 12
Simulation Summary - Maximum Plume Areas
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Figure 13
Simulation Summary - Maximum Plume Distance from Inflow
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Figure 14
Simulation Summary - Plume Duration
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Figure 15
Site: Great Chazy River
Model Region

Map Scale = 1:88816,

1l Inch = 1.4 Miles
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Figure 16

Site 1: Great Chazy River

Finite Element Mesh
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Figure 17
Site 1: Great Chazy River
Vertically Averaged Circulation Patterns - North Wind
(Directions Reversed for South Wind)

Velocities m/s Flux m*2/s
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Figure 18

Site 1: Great Chazy River

Vertically Averaged Circulation Patterns - Northeast Wind

{Directions Reversed for Southwest Wind)

Velocities m/s

Circulation Patterns

Flux' m'2/s

¥ind Direction

V4




Figure 19
Site 1: Great Chazy River
Transport Model Grid

Cell Depths (Meters) at Minimum Lake Elevation (92.9 ft,msl)
xxx = Land Mass, Cell Dimension = 400 meters
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Figure 20
Site 1: Great Chazy River

Empirical Projection of TFM Plume Based upon Dye Measurements

TIME = Hours from Entry of Lampricide Plume to Lake
DISTANCE = Distance from River Inflow (Meters)
LOG TFM = Logjo (Projected TFM Conc., ppb), Rescaled from Dye Data
TFM CONC = Measured Dye Conc. x TFM Load / Dye Load
LOoAD = Streamflow x Applied Conc. x Treatment Duration
Symbols: x = surface samples, o = subsurface samples
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Figure 21
Site 1: Great Chazy River
Observed and Predicted Maximum Dye Concentrations
Rescaled to Applied Conc. of 1000, Contours = 100-Fold Dilution

Observed Predicted

Great Chazy , scale factor = 162 airport speeds - site directions
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Figure 23
Site 1: Great Chazy River
Gell Maximum TFM Concentrations

Composite Projections for Eight Wind Directions, Units = ppb/5
Flow = 150 cfs, Applied TFM Conc.= 3.5 ppm, Duration = 16 hrs
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Figure 24
Site 1: Great Chazy River
Maximum TFM Concentration Contours

Composite Projections for Eight Wind Directions, Units =~ ppb
Flow = 150 cfs, Applied TFM Conc.= 3.5 ppm, Duration = 16 hrs
Map Scale 1:59507, 1 Inch = ,939 Miles




Figure 25
Site 2: Saranac River
Model Region

Map Scale = 1:88816, 1 Inch = 1.4 Miles
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Figuxe 26
Site 2: Saranac River
Finite Element Mesh

Finite Element
Mesh

Site 2

Saranac

207 Nodes

340 Elements
72 Bnd Nodes

Site 2 Saraenoc

=

533; ?ji

e y
R EEEEEES




Figure 27
- Site 2: Saranac River
Vertically Averaged Circulation Patterns - North Wind
(Directions Reversed for South Wind)
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Figure 28
Site 2: Saranac River
Vertically Averaged Circulation Patterns - Northeast Wind
(Directions Reversed for Southwest Wind)
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Figure 29
Site 2: Saranac River
Transport Model Grid

Cell Depths (Meters) at Minimum Lake Elevation (92.9 ft,msl)
Cell Dimension « 400 meters

xxx = Land Mass,
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Figure 30
S8ite 2: Saranac River (June)

Empirical Projection of TFM Plume Based upon Dye Measurements
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= Streamflow x Applied Cone. X Treatment Duration

x = surface samples, o = subsurface samples
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Empirical Projection of TFM Plume Based upon Dye Measurements

TIME
DISTANCE

Figure 31
Site 2: Saranac River (August)
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Figure 32
Site 2: Saranac River (June)
Observed and Predicted Maximum Dye Concentrations
Rescaled to Applied Conc. of 1000, Contours = 100-Fold Dilution
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Figure 33
Site 2: Saranac River (August)
Observed and Predicted Maximum Dye Concentrations
Rescaled to Applied Conc. of 1000, Contours = 100-Fold Dilution
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Figure 35
Site 2: Saranac River
Cell Maximum TFM Concentrations

Composite Projections for Eight Wind Directions, Units = ppb/5
Flow = 600 cfs, Applied TFM Conc.= 1.5 ppm, Duration = 12 hrs
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Figure 36
Site 2: Saranac River
Maximum TFM Concentration Contours

Composite Projections for Eight Wind Directions, Units = ppb
Flow = 600 cfs, Applied TFM Conc. = 1.5 ppm, Duration = 12 hrs
Map Scale 1:59507,

1l Inch = .939 Miles
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. Figure 37
Site 2: Saranac River
Maximum Bayer-73 Concentrations vs. Wind Direction
Maximum Mixed Layer Depth = 5 Meters, Units = ppb/5
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Figure 38
Site 2: Saranac River
Cell Maximum Bayer-73 Concentrations

Composite Projections for Eight Wind Directions, Units = ppb/5
Application Area = 175 Acres, Dose = 100 lbs/acre (5% Active Ingred.)
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Figure 39
Site 2: Saranac River

Maximum Bayer-73 Concentration Contours

Composite Projections for Eight Wind Directions, Units = ppb
Application Area = 175 Acres, Dose = 100 lbs/acre (5% Active Ingred.)

p Scale 1:59507,
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Figure 40
Site 3: Ausable River
Model Region
Map Scale = 1:88816, 1 Inch = 1.4 Miles
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Figure 42
Site 3: Ausable River
Vertically Averaged Circulation Patterns - North Wind
(Directions Reversed for South Wind)
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Figure 43
Site 3: Ausable River
Vertically Averaged Circulation Patterns - Northeast Wind
(Directions Reversed for Southwest Wind)
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Figure 44

Site 3: Ausable River
Transport Model Grid

Cell Depths (Meters) at Minimum Lake Elevation (92.9 ft;msl)
Cell Dimension = 400 meters
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Figure 45

. _ Site 3: Ausable River
Empirical Projection of TFM Plume Based upon Dye Measurements

Hours from Entry of Lampricide Plume to Lake

Distance from River Inflow (Meters)

Logyg (Projected TFM Conc., ppb), Rescaled from Dye Data
Measured Dye Conc. x TFM Load / Dye Load
Streamflow x Applied Conc. X Treatment Duration

Symbols: =x = surface samples, o = subsurface samples
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Figure 46

Site 3: Ausable River
Observed and Predicted Maximum Dye Concentrations
Rescaled to Applied Conc. of 1000, Contours = 100-Fold Dilution
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Figure 47

Ausable River

‘Maximum TFM Concentrations vs. Wind Direction
Maximum Mixed Layer Depth = 5 Meters, Umits = ppb/5
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Figure 48
Site 3: Ausable River
Cell Maximum TFM Concentrations
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Figure 49
Site 3: Ausable River
Maxinmum TFM Concentration Contours

Composite Projections for Eight Wind Directions, Units = ppb
Flow = 400 cfs, Applied TFM Conc.=1.6 ppm, Duration = 12 hrs
Map Scale 1:59507,

1l Inch = .939 Miles
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Figure 51
Site 3: Ausable River
Cell Maximum Bayer-73 Concentrations
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Composite Projections for Eight Wind Directions, Units = ppb/5
Application Area = 250 Acres, Dose = 100 lbs/acre (5% Active Ingred.)
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Figure 52
Site 3: Ausable River
Maximum Bayer-73 Concentration Contours

Composite Projections for Eight Wind Directions, Units = ppb
Application Area = 250 Acres, Dose = 100 lbs/acre (5% Active Ingred.)

Map Scale 1:59507, 1l Inch = .939 miles
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Figure 53
Site 4: lewis Creek
Model Region
Map Scale = 1:88816,

1l Inch = 1.4 Miles
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Figure 55
Site 4: Lewls Creek

Vertically Averaged Circulation Patterns - North Wind

(Directions Reversed for South Wind)
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Site 4

(Directions Reversed for Southwest Wind)




Figure 57

Site ‘4: Lewis Creek

Transport Model Grid

Cell Depths (Meters) at Minimﬁm Lake Elevation (92.9 ft,msl)
Cell Dimension = 400 meters

xxx = Land Mass,
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Figure 58
Site 4: Lewis Creek
Empirical Projection of TFM Plume Based upon Dye Measurements

TIME

= Hours from Entry of Lampricide Plume to Lake
DISTANCE = Distance from River Inflow (Meters)
LOG TFM = Logjg (Projected TFM Conc., ppb), Rescaled from Dye Data
TFM CONC = Measured Dye Conc. x TFM Load / Dye Load
LOAD = Streamflow x Applied Conc. X Treatment Duration

Symbols: x = surface samples, o = subsurface samples
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Figure 359
Site 4: Lewis Creek
Observed and Predicted Maximum Dye Concentrations
Rescaled to Applied Conc. of 1000, Contours = 100-Fold Dilution
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Figure 60
Site 4: Lewis Creek

Maximum TFM Concentrations vs. Wind Direction
Maximum Mixed Layer Depth = 5 Meters, Units = ppb/5
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Figure 61
Site 4: Lewis Creek
Cell Maximum TFM Concentrations

Composite Projections for Eight Wind Directions, Units = ppb/5
Flow = 50 cfs, Applied TFM Conc.= 6.5 ppm, Duration = 12 hrs
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Figure 62
Site &: Lewis Creek
Maximum TFM Concentration Contours

Composite Projections for Eight Wind Directions, ﬁnits = pph
Flow = 50 cfs, Applied TFM Conc.= 6.5 ppm, Duration = 12 hrs
Map Scale 1:59507, 1 Inch ~ .939 Miles
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Figure 64
Site 5: Putnam Creek -
Finite Element Mesh
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Figure 65
Site 5: Putnam Creek

Vertically Averaged Circulation Patterns - North Wind
(Directions Reversed for South Wind)
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Figure 66

S8ite 5: Putnam Creek
Vertically Averaged Circulation Patterms - Northeast Wind
{Directions Reversed for Southwest Wind)
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Figure 68
Site 5: Putnam Creek

Empirical Projection of TFM Plume Based upon Dye Measurements
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| I Figure 69
f Site 5: Putnam Creek
Observed and Predicted Maximum Dye Concentrations
Rescaled to Applied Conc. of 1000, Contours = 100-Fold Dilution
Observed Predicted
l depth = 8, max observed airport speeds - site directions
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Figure 70

Site 5: Putnam Creek

1T5 435872

1345470

Maximum TFM Concentrations vs. Wind Direction
Maximum Mixed Layer Depth = 5 Meters, Units = ppb/5
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Figure 71
Site 5: Putnam Creek
Cell Maximum TFM Concentrations

Composite Projections for Eight Wind Directions, Units = ppb/5
Flow = 30 cfs, Applied TFM Conc.= 8.5 ppm, Duration = 12 hrs
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Figure 72
Site 5: Putnam Creek
Maximum TFM Concentration Contours

Composite Projections for Eight Wind Directlons, Units = ppb

Flow = 30 cfs, Appilied TFM Conc.— 8.5 ppm, Duration = 12 hrs
Map Scale 1:59507, 1 Inch = .939 Miles
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Figure 73
Simulated Maximum Concentrations vs. Time
TFi4 and Bayer-73 Applications - All Sites
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Figure 74
Comparison of Plume Projections

Shaded Area = Projected 50 ppb TFM Plume
Contours = Maximum Dye Goncentrations (Meyers,1986)
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Table 1

Wind Speed and Direction Frequencies
Burlington Airport, 3-Hr Observations

May-September 1986

SPEED WIND DIRECTION
mph N NE E SE S s
0 4,25 0,08 0.0¢ 0,00 0.00 0.00
2 1.3 1.80 2.37 1.39 1.39 0.25
4 3.43 2,70 4,33 3.51 2.8 1.23
6 0.74 0.25 0¢.25 1,31 2,12 0.33
8§ 1.96 0.08 0.74 2,29 3.43 1.31
10 1.3 0.00 0.16 2.21 5.72 0.49
12 0.98 0.00 0.00 1.63 4.58 0.41
14 0.16 0.00 90.00 0.57 1.31 0.08
16 0.49 ©0.00 0.08 1,55 3.27 0.08
18 0.08 0.00 0.00 0.74 1.63 0.00
20 0.00 0.00 0.00 0.51 0.41 0.00
22 0.00 0.00 90.00 0.00 0,16 0.00
24 0.00 0.00 0.00 0.00 0.08 0.00
26 0.00 0.00 0,00 0,08 0,00 0.00

-----------------------------------------------------------------

Mean
Speed 5.7 4.5 5.1 10.0 11.3 8.0
mph

September 1986

0.27
0.65
2.54
1.57

0.76

.16
.76
.95

.27
.59

0
0
1
2.81
6
0
2.81

SPEED WIND DIRECTION
mph N NE E SE s SwW
0 0.00
2 1.08 0.32 1.531 0.65 0.49 0.16
4 1.89 2.1 1.78 1.8 1,51 Q.70
6 0.65 . 0.32 1.30 1,95
8 3.19 0.81 0.81 2.00 1.57
10 1.46 3.73 5.57 1.08
12 3.79  4.43  0.65
14 2.11 4.92
16 0.81 7.03 6.98
18 3.52 2.65
20 1.95
28 1.41

-----------------------------------------------------------------

Mean
Speed 4.2 5.0 5.0 12.0 11.4 8.1

mph

Table Entries: Percent of Cbservations
Speed = minimum of interval




Table 2
Distribution of Wind Load by Direction and Speed Interval
Burlington Airport, 3-Hr Observations

May-September 1986

SPEED . WIND DIRECTION
mph N NE E SE s sw w N ALL
0 6.00 0.00 0.00
2" 0.14 0.1&6 0.20 0.12 0.12 0.02 0.02 0.07 0.85
4 0,72 0.53 0.82 0.73 0.62 0.24 0.29 0.53 4.48
6 0.28 0.09 0.09 0,50 0.81 0.13 0.28 0.69 2.88
8 1.17 0.06 0.42 1.41 2,09 0.75 0.97 1.60 8.45
10 1.45 0.17 2.43 5,93 0.51 1.06 3.13 14.88
12 1.45 2,53 7.32 0.63 1.29 4.31 17.53
14  0.34 1.18 2,71 0.17 ©.68 2.03 7.10
16 1.23 0.23 4,03 8.43 0.20 2.03 5.30 21.47
i8 0.27 2,56 5,70 1.43 4.07 14,03
20 1.77  1.87 1.47 5.11
22 0.91 0.91 1.82
24 0.57 0.57
26 0.84 0.84

-----------------------------------------------------------------

&
September 1986 57t
SPEED WIND DIRECTION
mph N NE E  SE s SW W MW ALL
0 0,00 0.00
2 0.25 0.08 0.35 0.16 0.12 0.04 0.04 1.02
4 0.69 0.81 0.61 0.69 0.59 0.26 0.11 0.30 4.07
6 0.33 0.17 0.67 1.00 0.33 1.00 3.50
8 2.09 0.54 0.5 1.31 1.00 1.78 1.86 9.12
10 1.20 3.42 4.81 1.01 1.41 5.62 17.47
12 4.26 5.01 0.75 0.62 10.64
14 2.70  6.31 3.61 12.62
16 1.25 10,31 10,13 1.07 22.75
18 5.99  4.54 10.53
20 3.78 3.78
28 &.49 4.49

-----------------------------------------------------------------

ALL 4.56 1.05 2.74 37.01 33.83 3.06 4,70 13.04 100,00
Mean
Load 0.40 0.32 0.48 2.70 2.17 1.01 1,32 1.40 1.52

Table Entries: Percent of Total Wind Load Over Period of Observations
Load Factor = (.22 §2 + .004775 83)/19.8
S = Mean Wind Speed (miles/hr)
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Table 3

Dye Study and Treatment Conditions

--------------------------------------------------------------------

Site Number 1 2 2 3 4 5
River Chazy Saranac Ausable Lewis Putnam
Dye Study Conditions (Meyers,1986)
Date 1986 5/29 5/31 a8/8 8/6 8/11 8/13
Mean Flow cfs 225 750 1050 625 145 65
Applied Conc, ppb 5.5 3.0 3.0 2.8 9.4 11.8
Applic. Duration hrs 12 12 12 12 12 12
Background Fluor. - ppb .02 .03 .03 .03 .02 .03
Resolution (a) 275 100 100 93 470 393
Resclution (Back.=.05) 110 60 60 56 188 236
Resultant Wind N NW s s v s
Wind Load Factor 1.16 .84 77 .85 1.23 .51
Stream Temp. {(b) deg-F 67-72 67-68 71-72 70-72 ?  69-70
Lake Surface Temp. deg-F 57-63 56-61 72-73 71-73 72-73 73-74
Dye/TFM Load Factor (c) 1.77  3.50 2,50 2,73 4.19 " 3.00
Max. Mixed Depth m 1.5 2.0 5.0 10.0 10.0 5.0
Prescribed TFM Treatment Conditions
Streamflow
Low cfs 100 500 300 25 15
High cfg 150 600 400 50 " 30
Assumed cfs 150 600 400 50 30 4
Treatment Duration hrs 16 12 i2 12 12
Applied Conc. PpPm 3.5 1.5 1.6 6.5 8.5
Total TFM Leoad 1bs 1885 2424 1725 aze 686
Sp a/d Factor;?aa -& 3(d) ]j' ?5 1 1 /
tHyTe 4 {7> 77
Bayer-q?g: ?reatmentponditions 325- ({2‘6‘ ¢
Application Area acres 175 250
Total Dose lbs/acre 100 100
Active Fraction - .05 .05
Duration of Release hrs 6 6
Active Load 1bs 875 1250
a Resolution = Maximum detectable dilution factor =

applied concentration / background fluorescence

b River inflow temperatures estimated from surface measurements in

peak of dye plume at river mouth;

lake surface temperatures

estimated from surface measurments distant from river inflow.

c bye Load / Prescribed TFM Load (1b/1b) x 1000

d Spread Factor accounts for digpersion of TFM in river above lake;
' conc. entering lake is divided by 3 and duration of loading is
multiplied by 3 (based upon dye study results).






